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ABSTRACT ‘A’/ E
We can create a richer and more neurophysiclogically realistic mode! of
neural activity in the brain by developing a model of neural-dendritic coupling,
one which expressly accounts for the way in which the many afferent connec-
tions into the neural body influence the somatic membrane potential. Such a
model would begin to fill the need within the Antificial Neural Network commun-
itv for neural models which go beyond the current "weighted sum” paradigm for
artificial neuron connectivity. Although such models have use in engineering
applications, there are many aspects of biological neural-dendritic organization
which could enrich artificial neural networks. Moving from simple "axonal”
connection weight neural models to neural-dendritic models with a richer struc-
ture will allow investigation of both events at the neural level (e.g. inter-spike
interval histograms and stochastic resonance) and also potentially at the ncural
systems level. This will also introduce the possibility of introducing cross-scale

interactions into artificial neural systems.

L INTRODUCTION

The effect of neural-dendritic interactions has so far been only weakly probed in the realm
of artificial neural networks and neural modeling. Traditional Artificial Neural Network (ANN)
models of interacting neurons use a simple description of neural connectivity. In such simple
models, communication between neurons is afforded by artificial axons, and the "strength” of a
given neuron-10-neuron connection is given as a "connection weight” between the two neurons.
Synaptic plasticity is viewed in terms of the modifiability of connection weight ("axonal”)
strengths (for a review of ANNSs, see Maren. Harston, and Pap, 1990).

A more neurophyvsiologically realisitic - and interesting - basis for modeling neural systems
would take into account the nature of ncural-dendritic connectivity. Such considerations for
neural systems modeling were advanced as early as 1958 by John von Neumann. In "The Com-
puter and the Brain,” von Neumann wrole:

.However, the more frequent situation is that the body of a neuron has synapses with axons

ot many other neurons. 1t even appears that, occasionally, several axons from one ncuron
torm synapses on another. Thus the possible stimulators are many, and the patterns of
stimulation that mayv be effective have more complicated definitions than the simple "and”
and “or” schemes desenbed o It may well be that cerntain nerve pulse combinations will
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second-order chemically gated synapses have longer tme constants and cannot beoireded By oo
madel.

In order to characterize processes al the syvnaptic levell te o characiense o dondn
volume activaiion in terms of ity relanonships o mpuis and 10 ot aton docay . we wet s
Do e wWial postsynaptic actvanon of a small dendrine volume which can miciade
dntic spines and their afterent connections, The dendntue volume s roughls equn
“dendron” introduced by Eccles {1964 Pre-synapuc chemically-gated input 1o the ademds
volume, resulting from action potentials at other neurons, contnbules o the tetad dond
volume activation. We think of this input as being predominandy duc to chemcaliv-gated svnap
tic transmissions which have time-constants in the 1-Sms. range {Kandel et al 19491 m, 124 'I(“-
a great extent, the elicited post-synaptic-potential (PSPY response to alferent spiking s hincar
However, the response is bounded from above in the case of excitatory inputs and from helow
when the inputs arc inhibitory. This is due to probabilistic release of quantized packets of neuro
transmitter into the synaptic cleft {Eccles, 19811 and to a finitec number of channcls i the post
synaptic terminus. Further, experimental measurements of excitatory and inhibitory PSP< show
that both are maximally within several tens of millivolts of the membranc resting potential {Kan-
del et. al. 1991}, This also indicates bounding of the PSPs. Bounding also comes about through
scalingof the PSP which occurs in the short distance the PSP travels from the synaptic site, at the
spine head, to the spine base; simulations indicate that the potential may drop by as much as 95%
as a result [Segev et. al. 1992]. Consideration of these combined factors will allow us o model
the temporal derivative of the activation or total polarization of a small dendritic volume as an
activation decay term plus input terms. The inputs will include the weighted and bounded effects
of presynaptic signals from axonal and/or dendritic connections, a weak (low amplitude and fre-
quency) periodic driving force, and noise. As we shall see later, the form for the temporal deriva-
tive of the activation in a synaptic volume will be the same as for the neural body itsclf.

The activation potential which originates in a local dendritic volume and moves through the
dendntic arborization towards the soma undergoes two substantial changes [Segev et. al. 1992).
Both changes influcnce the model that we construct for time-dependent activation at the soma.
First, there is a marked attenuation of the maximal signal amplitude, and second. there is a draw-
ing out of the signal waveform. Simulations by Rall and Rinzel {1973], Rinzel and Rall [1974]
and Segec et. al. {1992] indicate a strong attenuation if the synaptic PSP as it passes from the ori-
ginating dendritic volume towards the soma. The final maximal signal amplitude reaching the
soma can be less than 1% of the original maximal amplitude, even though the stretiched signal
duration indicates that a substantial portion of the signal is preserved via temporal integration.
This leads us to model the neuronal (i.e. soma) input not as the direct value of the synaptic activa-
tion but rather as a bounded function of it. This makes plausibie the use of a transfer function
such as a sigmoid or hyperbolic tangent, which is so ubiquitous in ncural modeling It is impor-
tant 1o point out that the decoupling (10 be described in the following section: of the neuro-
dendritic stochastic differential equations via the adiabatic theory will be tantamount to a "quasi-
lineanization” of the dendritic dynamics. Another observation arising out of these simulations 1<
that the PSP signal waveform is greatly stretched as it travels towards the soma. Specifically. an
input that may occur in less than 10ms. at the synaptic sitc may have an influecnce persisting over
100ms. at the soma. This is particularly true if the synaptic site is far from the soma. We can
summarize this by noting that "...the dendritic trec behaves as a substanual defla fltne for the
synaptic inputs {and that] distal inputs are subject to significantly longer ncural deiays than proxi-
mal inputs..." {Segev et. al. 1992]. The notion of different distributions of synaphic input has been
stated and experimentally observed as early as the 1960s |e.g Rall 1970} In anyv given neuron.
due to the branching nature of the dendritic tree, there will be far more distal inputs than proximal
inputs. Thus, to a first approximation, we can model the synaptic inputs under the assumption that
the time-constants of cvents are "stretched” as they move through the dendnte passage o the
soma. This allows us to make an adiabatic approximation in treating the oo cauatons ot
the dendnitic volumes and the neuron.

We tumn our attention now to the membrane potenual at the nourai some o aaes hidlock,
and note that again we may think of the temporal denvative of the woooare o v v o




1]

back 1o a (zero-level resting state - A more ctfecnve model of neural wcuvavon requites that the
inputs 1o the neural systemt be modeled i a contimuous manner. consistent with our undentandd
ing of the "stretched” amival of dendrine acuvabons at the neurdd soma, as has been downibed
Rall and Rinzel [1973] Rinzel & Rall {1974 Holmes & Rall {19921 and Scgey ctal 119920
a later work, Stein et al. {19741 identidicd the acuvation ot the neuron as the rate at whach nene
impulses would be fired. While this would allow an mtuitive connection between the nearal
model deseription and “states”, which could be roughly desenbed in terms of the average fre
quency of firing of an action potential, it dees not serve when the model needs (© be connecied
with a more cxplicit description of neural dynamics, such as the generauon of interspike inten
histograms. We will retumn to this point later in this work. Subsequent invesugators have
developed diffusion models in which the discontinuities in «,(¢) hiave been smoothed out (see e.g.
Tuckwell. 1980 and references cited therein). While more mathematically tractable. such models
again treat the arrival of excitatory and inhibitory signals to the neural soma as discrete rather
than continuous processes.

For the current work, a more precise identification of the ncural membrane potential 1s
needed: one which distinguishes it from the potentials within the dendritic network afferent 1o the
soma, and one which decouples the continuous-time activation changes in the soma that occur in
response 1o input and activation decay from the action potential, whose abrupt nature may be
viewed as a reset mechanism of an otherwise continuous process. In our work, the vanable w.(c}
refers specificaily to the membrane potential at the trigger zone in the neural soma. This is
because the interesting dynamics of the soma are generated at the trigger zone, which has a lower
threshold than the rest of the soma. However, changes in membrane potential at the trigger zone
propagate rapidly both throughout the soma itself, and down the axon as an action potenial. We
regard the brief depolarization and casusing hyperpolarization of the action potential (and its
corollary within the neural soma itself) as a reset mechanism whose details are not addressed in
this work. Our model does, however, address the coninuous changes in membrane potential due
to dendritic connectivity, activation decay, and other factors.

The disparity in the neural and dendritic time-constants discussed above is incorporated into
our model via the constraint,

R, <R, (i>1). (2)

This constraint will allow us to confidently utilize the slaving principle of Haken [1977] to reduce
the system (1). This reduction is carried out in the next section. We also consider, via numerical
simulations, the range of validity of the adiabatic elimination technique as well as the bifurcation
properties and collective effects that appear in the decoupled neuron dynamics because of the
interaction with the dendritic bath. Finally, we discuss switching events (between the
firing/quiescent states of the neuron) that arise as a consequence of the interplay between the
noise and the periodic modulation... stochastic resonance.

I1. SINGLE NEURON DYNAMICS

The separation of time-scales embodied in the inequality (2) permits us o apply the slaving
principle [Haken 1977] to the coupled system (1). This leads to a closed equation for the soma
activation function (1) i.e., the system (1) is decoupled. The proceedure is outlined in the fol-
lowing subsection (refer to Schicve, Bulsara and Davis 1991, Bulsara, Maren and Schmera, 1992
for details) in which we also introguce the effective "potential function” corresponding 1o the sin-
gle neuron dynamics. This is followed by an analysis of the bifurcation properties of the reduced
model! (in the absence of the deterministic modulation ¢ sinw). The remainder of this paper
examines the cooperative effects (together with their potential implications in neuroscience) that
arise when this modulation term is switched on.

Reduced Neuron Equation

Equation () represents a system of globally coupled nonlinear stochastic differential equa-
tuons. subject 1o the constrant (2) on the cquivalent crrcuit resistors R,. The N-dimensional




where 67 = C 7 and £ is Gaussian delta-correlated nowse having 7oro mean wiad winl v
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and we have set G, =1-Jy Ry, Equation (9) (the so-called "reduced” or “effective” neuron
dynamics) constitutes the starting point for our subsequent analyses, «, representing the voltage
at the soma. We note that it contains (via (11)) the effects of the coupling between the cell body
and each of the dendritic volumes. Back-coupling (characterized by the coefficients J,,) cifects
are included as well as self-feedback terms (characterized by the cocfficients /,,). Cross-coupling
terms (characterized by products of the form R, R, J, /i ; ki >1) between the dendritic spaces are
also present but are neglected. It is important to point out that, in general, the expressions (11b.c)
contain higher order terms; these are absent because of the truncation (at second order) of the
Taylor expansion of the functions tanhy; ., consistent with our assumption of small deviations
from equilibrium of the dendritic "bath”. The detailed analysis [Schieve, Bulsara and Davis 1991]
leading up to the expressions (11) shows these terms to be of higher order in 62R,2C,. We
assume that the dendritic noise terms are sufficiently weak so that we always have

O";ZR,'
2C;

so that the deviations u; - i; are small. Note also that we have nor assumed that the matrix J is
symmetric, in contrast with existing (Hopfield-type) models. In fact, no further assumptions
beyond (2) and (12) (both of which are based on very reasonable physical and neurophyvsiologicat
arguments) as well as the adiabatic assumption of very low modulation frequency © need be
made to obtain the reduced neuron dynamics (9). In the next subsection, we write down the
"potential” function corresponding to the reduced neuron dynamics and examine its stability and
bifurcation properties. We also present numerical simulation results that elucidate the range of
validity of the reduced description (9) when compared to the full dynamics (1).

<1l i>1, {12

Steady-State Potential Function; Stability and Bifurcation Properties

It is easy to show, via linear stability analysis, that the dynamics in (9) are globally stable as
long as a=0. For this case, the potential function U (u;) is a Liapounov function for the reduced
dynamics (9). We note that stability does not depend on the propertics of the coupling matrix J
Assuming o 20, we can easily show that the potential (10) will be parabolic (with an elliptic fixed
point at &,=0) if f<a (this includes negative as well as positive values of ). For § > a, the poten-
tial is bimodal (with its minima located at ¢ =+ (B/a)anh{B/a), and a hyperbolic fixed point at i =)
and cooperative stochastic effects come into play. The transition to bimodality (at §= 18
accompanied by a pitchfork bifurcation in the most probable value of the activation u. with the
two states (attractors) corresponding roughly to the quiescent and firing states of the neuron The
flow (given by the first term on the rhs of (9)) exhibits the charactenstic N-shaped relationshp
known to exist in excitable cells (see ¢.g. Rinzel and Emmentrout 1989, Abbott and Kepler 10ut:
We now consider the effects of the cell body coupling to multiple dendnitic volumios on Cus tw
siion. Throughout the remainder of this work we shall assume, for stmplicity, that the nease vas
ances in the clemental dendntic volumes are the same and, further, that all the dendne, o
constants are equal Speaifically, we set o7 = 0f R, =&y forall c>tand ¢ 1 toral o M e




P(u,)

We now digress briclty 1o consider the cise i which the potential o monomodal i the
absenee of any coupling to the dendnuc bath cthis can be achieved by setueg /02 < Lo cons
trast o the case discussed in the preceding paragraph. Then, one can casily calculate the value of
R+ (for given noise varance o3 and configuration of the matrix Ji above which the eftective
potential 18 bimodal. Increasing £ ; leads 1o a transiion 1o bimodality (occurmnng at i o= 1 only 101
the case in which the sum 3 /7., /,; 1s positive (keepig 1 mind the constraimt imposed by the ine-

quality (12)). This may be realized by imposing the same sign on the vast majonty of the oft-
diagonal elements J,, and J,,. Increasing the noise varance o5 degrades the effect: this is evident
{rom (11b). li i1s apparcnt that the coupling to the dendritic bath may actually introduce 4 phase-
transition-like behavior into the neuron dvnamics. Effects such as this coupling-induced bimodal-
ity are a hallmark of multiplicative noise (see e.g. Horsthemke and Lefever 19845 and have been
examined in simpler ncuron models (for both additive and multiplicative noises) by Bulsara, Boss
and Jacobs [1989], and Bulsara and Schicve {1991]. The opposite effect can also oceur: depend-
ing on the magnitude and sign of each eleruent J,,, a potential that is bistable 1n the absence of the
bath coupling, can be rendered monostable by the dendritic field. This is evident from (11b).
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Before concluding this subsection, we present the results of numernical simulations aimed at
demonstrating the validity of the approximations made in this paper. Figure 2 shows the probabil-
ity density function corresponding to the "siow” variable u,. The solid curves (corresponding to
simulations of the fully coupled system (1)) have been obtained via direct integration on an HP-
Apollo 425T workstation. We consider N=10 clements since the simulations become prohibi-
nvely time-consuming for larger N values. The system has been integrated through 12,000
penods of the deterministic modulation (after allowing the transients to die out) using a stepsize
of 0.015. Noise has been included in the dynamics via the Heun algorithm (see e.g. Greinerer. al.
108K). The data points show the results of integrating the comesponding effective one-body equa-
wn (9 gsing the same routine. In this hgure we take R, = 10 and consider the case R;=0.35 and

1. all other parameters remaining fixed. The agreement between the exact and reduced dynam-
s e seen to be excellent for R-=0.35 Increasing R, 10 1.0 still yields reasonably good qualita-
fncoaereement although it apparent that we are very close to the boundary at which (2) ceases
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An approximate expression for the power spectral density for g one-dimensions) nonline

stochastic system of the form (91 has been denved by MeNamuara and Wiesenleld FHana:

P{D=11-27 (ro,)“ HRZroc®) + 47 n(rl,;(‘ PO -w)
= NED + S 8(€2 ~ ) i1y
where we define Z =(4rg + Q)" and L=58c0f is a perturbation theory expansion parameter S
and N are, respectively, the signal and noise powers. The above expression provides a good
approximation 1o the power spectral density for L < 1 and has been derived under an adiabatic ¢
low-frequency) approximation © « U®(c) that is somewhat less stringent than the o << 7, approx-
imation introduced carlier. The SNR is then oblaincd {rom

=

{ h}

1 Q(m) 8
SNR =10log +N(w)r . (17
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1 Fig 3. SNR computed from (16) and (17) for
f(R Ry.q,00,80 .N) =(10,0.6,0.1,0.1,0.001,1003.
J,,—1_~J,1,J,l_)~11, Ji=0,J2=1,0>1).

! Bottom curve: J,, =0 (isolated casc). Remaining
\curves cz—O(top) 1 (middle), andz(lowcr)

«Inset the case for no modulation in the cell- body
eqn in the system (1).
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absence of the bath, as a consequence.

IV.STATISTICAL ANALYSIS OF FIRING EVENTS

It is imponant to point out that stochastic scsonance (as characterized by the bell-shaped
SNR vs. noise variance curve of figure 3) has not yet been dircctly observed 1in a living system
(although we will ennunciatc a possible caveat to this statement at the end of the following sub-
section). The existence of noise-induced swilching in the nervous system would seem, however,
10 be an eminently reasonable assumplion, based on our simple model of the neuron as & noisy
bistable switching element. Certainly, noisc is ubiquitous in the nervous system: hence onc
might expect that when sensory neurons arc periodically stimulated, the time intervals between
successive firing cvents contain sensory information. These "reset” or "refractory” events
correspond to the repolarization of the cell membrane. In fact, this has been weli-known 1o neu-
rophysiologists for many years. In neurophysiological experiments it is common 1o assemble an
ensemble of firing events and fit a histogram to the intervals between the spikes. An example of
these Inter-Spike-Interval Histograms (I1SIHs), which are quite commonly szen in the neurophy-
siological literature, is shown in the following subsection. In this subsection we also demonstrate
how the salient features of the experimentally observed ISIHs can be easily explained by our
bistable model; in fact, we shall see that our model affords the simplest possible interpretation of
the experimental spike train data. Throughout the rest of this work we show results for arbitrary
values of the constants o,,8 in (9), i.e., we do not consider the particutar details of the quanti-
ties on the right-hand-sides of equations (11).

The Inter-Spike-Interval Histogram

We now retum to our reduced system (9) and consider only the time intervals of the transi-
tions between the potential wells (labeled A and B) while ignoring the intrawell motion (recall
that the potential wells correspond, roughly, to the firing and refractory states of the soma}. This
is tantamount to replacing the detailed dynamics contained in (9) by the equivalent "two-state
dynamics” depending only on the barrier height and the locations of the elliptic points of the
potential (10). The result is the random “telegraph signal"x{¢) ( =u,(¢) in the notation of this
paper) depicted in figure 5.

ABBA
T, T T

%_;» SN
B B B B
Xo B Fig 5. Sample output from two-state device
— driven by noise plus weak sinusoidal
+ + YV A vV / . modulation. Stable states at +xq are labelled
~— 3 t 1111 © A and B. The ABBA and ABAB sequences
7S shown, arc the only consecutive time-interva
sequences available to the two-state system
—X L] L] from which ISIHs can be generated.
o
A 3 A A A
7\ oY




the deterministic moduiation i (91 the two sequences of hgure S lead o ditterent ISTHS T oy
sequence, referred o as the ABBA process. measures the escape time from well Bl leads o an
ISIH with modes located at owd integer muduples of 122077 being the modalation penod A e
describing this histogram has recently been developed [Zhou, Mossand June 1941, The botter:
sequence {the ABAB process) leads 10 7 bstogram with peaks tocated at @il inreger muinples
1. This is the sequence commonly ob~orved i expenments tand the one that we concentrate on
through the rematnder of this s ussioni it pomnts 0 the existence of o “reset moechunism

between every pair of spikes. Thic resct events are wdenulicd with the repolariziations of the neuron
membrane that occur between successive upstrokes of the acuoen potenual and are not directls
obscrvable in ncurenaysiological expenments. In figure 6 we show an expenmental 1STH
obhtained from the single auditory nerve fiber of a cat. This data should he compared with the
ABAB ISIH hown in figure 7. The scquence in this figure is obtained via analog simuliation of
(9) with the potential function ¢ given by (10) as well as the “standard  quartc

(,"(u1}=—% ui - i— ui (this poential is also bistable). The scquence of peaks in the ISTH implies o
form of phase-locking of the neuron dynamics 10 the stimulus. Starting from its quicscent state,

the neuron tries o fire at the tirst maximum of the stimulus cycle. If it fails 10 do so, it will fire o
the next maximum of the stimulus (i.c. after a complete stimulus cycle) and so on, with a firing
event corresponding to a switch between the two states of the potential (10). This “statistical skip-
ping” leads to the sequence of peaks in the ISIH. Decreasing the noise strength (keeping all the
other paramelters fixed) leads to more peaks in the histogram since skipping becomes more likely
Conversely, increasing the noise tends to concentrate the probability into the first few peaks. For
vanishingly smail stimulus amplitude, the peaks merge into a Gamma distribution characterizing
the ISIH for the spontaneous case [Longtin et. al. 1992}; such a distribution has also been
observed experimentally.
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Our model is seen to reproduce all substantive features of the expenmental data: in addition
to the charactenstic T-dependent locations of the successive peaks, the modal decay rates (except
for the first few peaks) are exponential. Analog simulations show (Longtin, Bulsara and Moss
1991: Longtin et. al. 1992] that, on a semi-logarithmic scale, the decay constant is proporiona!
to the modulation amplitude & for fixed noise intensity o, with a qualitatively similar relation
ship obtained between the decay rate and the noise strength for constant §. This 18 not loo surpris-
ing since the noise and signal arc on equal footing in (9). We may then speculate that, over a cor
tain (as yet not fully defined) range of paramcters, the noise and signal play interchangeable roies
in determining the shape of the ISIH. Their roles are not completely reciprocal, however, sincg
the peak-widths in the 1SIH are dependent on a? Increasing the sumulus amphitude leads o
increase in the heights of the lower lying peaks. This is consistent with experimental ohservanon
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Comparison to Integrate-Fire Models

A stochustic modet, similar mnosprit (o the detemmumistic qregrate-hre podel e o g
keener. Hoppensteadt and Rinzel 1981, and references thereind was onginatly developed <Ger-
stein and Mandelbrot 19647 1o try 1 explamn the expenimentally observed ISIH corresponding o
spontancous hring events: as pointed out above, this distribation tunction s & Gamma disinbu
tion. Assumimyg the undertyving dynamics o be time-stationary, a random walk desenphion was
invoked. based on the comenstone requirement of a stable distribution funcuon for the probabihins
density of tirst passage tmes corresponding to the dynamics. The state vanable «. was assumed
1o execute a biased random walk to an absorbing threshold at which point o tiring event was
designated to have occurred and the membrane potential «. was then instantaneousts reset to its
sarting value (Ui reset mechanism being purely detemumnistic unlike our histable model,
which 1t iy stochastic). The distance between the orgin and the threshold is the "bamer height” -
(analogous 1o the height U, of the potential barmer in our bistable model) in the Gerstein-
Mandelbrot descnputon. Further, 1t was assumed that the motion in phase space occurs under the
mfluence of a positive drift coefficient p which was defined by Gerstein-Mandelbrot as the ditfer-
ence between the drift velocities corresponding to excitatory and inhibitory synaptic inputs (it is
neurophysiologically reasonable to assume these velocities to be different). Then, assuming the
presence of somc (as yet unquantified) random background noise which is taken 10 be Gaussian
delta-correlated with zero mean and variance ¢%, onc may write down the Langevin equation for
this process:

uy=1w+F (), {(18)
to which corresponds the Fokker Planck equation
d oP 5 9°P
—Pu,, D)= -p—+0" ——, (19
Y (uy. 1) uau‘ + P17 (19)

for the probability density function £ (u,,r). This equation can be readily solved subject to the
appropriate boundary conditions and the probability density function of first passage times writ-
ten down in the form [Gerstein and Mandelbrot 1964,
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The density function g (1) reproduces many of the properties of experimentally observed ISIHs for
the spontancous firing case. The mean first passage time to the absorbing threshold is calcuiated
as the first moment of g(r), and its reciprocal yields an average firing rate. Variations of this
model incorporating moving boundaries (which mimic refractonness and are therefore closer to
neurophysiological reality) as well as a dnft term that is linear in the dependent variable u, (the
underlying dynamics 1s, in this case, representative of an Omstein-Uhlenbeck process), have been
studicd by Johanessma [ 1968] and. Clay and Goel [1973].

In order to make even better contact with expcrimental results, it is necessary to provide
reasonably good numerical values for the drift coefficient y, the "barnier height” z and the back-
ground noise variance o in the above model. A first attempt to do so (while simultaneously pro-
viding a test of the goodness of (it of the model to ncurophysiological data) was carried out by
Berger 2t al 119901 They camed out an experiment aimed at recording the inter-spike-interval
distribution from extra-cellular recordings on the cat visual cortex. Having obtained the experi-
mental 1ISTHs, they were able to compute the equivalent model quantites p and 2 via the mean
arih standard deviation of the experimentally obtained 1SIHs, assuming a fixed background noise
vanance o While we do not give any further details of the expenment. it is noteworthy that,
are these seit-consistent” values of p, @ and o= were substituted into the first passage ume pro-
sabriy denstty tunction. an excellent fit of the model 20y 1o the experimental ISTHs resuited In

seeguent pabhoanon, Berger and Pribram {1992 exiended their work 1o mmcorporale the

{ TR
g)= ~——~z-—expﬁ - w} . i)
L J
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the fully coupled N-body system withun the construmnts o the theors The approach lowds &
| macroscopic “potential’ tuncuon {0 detined i (1o which puarantees ghobal stabihiny ol
dynamic system tor posiive ¢ sithout having to constram ourselves 1o a svmmetnie couphng
matnx J. Our theory s seen o agree well with Jarge numencal simulatons ot the coupivd ~o
chasuce differential cquatons ¢ within the bounds imposed by the constrants 2y and 112

The theory desonibed here enables us 1o desenbe a network of nonhinear oscilfators wih
nonlinear coupling. However, because of the separation ol tme-scales. the dendnoe batdi
tacitly assumed to be very close to its stcady state. This feads to the quasi-hincanzabon approx
mations (9) and (11 and brnngs our description of the bath closer to other quast-hincar dendnc
models {sec c.g. Segev et al. 1989]. In cffect. we have assumed that the dendnuc patches are
only weakly bistable; they are not "strong” threshold devices. These assumpuions also bring our
approach closer to conventional mean-ticld theories [see €.g. Amit 1989 for an overview; Unlike
such theories, the current approach does not depend on a large number A of entities 1o improse
its convergence although, as pointed out carlier, in the presence of additional clements in (1) with
similar time constants, recourse 1o a more convennional mean-field approach may be unavoidable
Further, it is interesting to note that the notion of representing the dendritic bath as a tesselauon
of elemental volumes cach described by a quasilinear stochastic differcntial equation for an
activation function u, (i >1) is similar in spirit (0 existing comparnmental models of dendritic trees
(sece e.g. Segev et. al. 1989). Our results appear 10 be independent of the choice of the statistics of
the elements of J; repeating the calculations of this paper with the J,, drawn from a uniform dis-
tribution yields qualitatively similar results although, as pointed out earlicr, Gaussian statistics
may be more reasonable from a neurophysiological perspective. In this connection it is worth
pointing out that one expects typically small/sparse interactions (characterized by coefficients
J,; >0,/ >1) between dendntic volumes so that these coefficients may indeed be reasonably
characterized by a sharply peaked (abou! zero mean) Gaussian. The distribution of the
coefficients J,; and J;, (these coefficients characterize the interaction between the soma and the
dendritic volumes) is broader. Good agreement between the probability density P(u,) for the
reduced system (9) and the exact system (1) is also obtained for somewhat larger ¢ values and
noisc strengths (within the bounds of the inequality /72)), although the agreement begins to break
down when the adiabatic condition on the frequency is violated. The magnitudes and signs of the
J,, can be very important in determining the overall sign of the renomalized coefficient § in
(11b) and this, in tumn, determines the modality of the potential (10). For a monostable potential
(B < a) the cell body is always quiescent and there are no cooperative effects. The bath coupling
can render a monostable potential (for the isolated cell body) bistable, under cenain conditions,
thereby imparting a firing capability to the neuron; the opposite effect can also occur. This is evi-
dent from the definitions (11b,c): changing the dendritic parameters changes tae barrier height
and the location of the elliptic points of the effective potential (10) that characterizes the soma
dynamics, while also renormalizing the modulation amplitude. These changes lead, in tum, to
changes in the SNR given by the expressions (16) and (17).

The approach to the processing of information in noisy nonlinear dynamical systems. based
on the probability density of residence times in one of the stable states of the potential offers an
altcrnative to the FFT, and has been applied {Longtin, Bulsara and Moss 1991; Longiin ct. al
1992] in the theoretical construction of inter-spike-interval histograms (ISIHs) that describe neu-
ronal spike trains in the central nervous system. This model exhibits remarkable agreement with
data obtained in two different experiments some 25 years apart [Rose et. al. 1967; Siegal 1990} as
well as with the more recent data of Rhode [1991; unpublished]; figures 6 and 7 demonstrate this
agreement. The approach of Longtin et. al. has been contrasted with more conventional theones
of 1SIHs based on integrate-and-fire (IF) models in which the activation performs a random walk
v an absorbing barrier and is then reset to its initial value. In the absence of an absolute retrac
tory penod, the two approaches may, in fact, converge with the mean tiring rate (computed as the
reciprocal of the mean first passage tme) n the IF model corresponding. roughly, to the moean
duraton of a full-cycle switching event in the histable diffusion modcel of Longuin et al "he
approach of Longtin et al . however, seems to offer the most elegant treatment of the 1STHL cer
tunly ot permmits one o match the model with experimental data tfar more closely than




REFERENCES
Abbott LF, Kepler TB (1990) Model neurons: from Hodghkin-Huxley to Hopheld In Gamdo L
(ed.) Statistical mechanics of neural networks. Springer. Berhin

Amit DJ (1989) Modcling brain function. Cambnidge Univ. Press, Cambridge
Berger D, Pribram K, Wild H. Bridzes C (1990) An analysis of neural spike-truin distnbuts =+
determinants of the response of visual cortex neurons 1o changes in onentation and spatial

quency. Exp. Brain Res. 80:129-134.

Berger D, Pribram K (1992) The relationship between the Gabor elementary function and a sto-
chastic model of the inter-spike-interval distribution in the responses of visual conex neurons.
Biol. Cyb. 67:191-194,

Buhmann J, Schulten K (1986) Influecnce of noise on the behavior of an autoassociative neural
network. In Denker J (ed.) Neural networks for computing. AIP, New York.

Buhmann J, Schulten K (1987) Influence of noise on the function of a "physiclogical” neural net-
work. Biol. Cyb. 61:313-327.

Bulsara AR, Boss RD, Jacobs EW (1989) Noise effects in an electronic model of a single neuron.
Biol. Cyb. 61:211-222.

Bulsara AR, Schieve WC (1991) Single effective neuron: macroscopic potential and noise-
induced bifurcations. Phys. Rev. A44:7913-7922.

Bulsara AR, Jacobs EW, Zhou T, Moss FE, Kiss L (1991a) Stochastic resonance in a single neu-
ron model: theory and analog simulation. J. Theor. Biol. 152:531-555.

Bulsara AR, Maren Al, Schmera G, (1992) Single effective neuron: dendritic coupling effects
and stochastic resonance. Biol. Cyb., preprint.

Chialvo DR, Apkarian AV (1992) Modulated noisy biological dynamics: three examples. In
Shlesinger MF, Moss FE, Bulsara AR (eds.) Procecdings of the NATO Advanced Research
Workshop on Stochastic Resonance and its Applications to Physics and Biology. 1o appear.

Clark JW (1988) Statistical mechanics of neural networks. Phys. Repts. 158:91-157.

Clark JW (1989) Introduction to neural networks. In Proto AN (ed.) Nonlinear phenmoena in
complex systems. North Holland, Amsterdam.

Clay JR, Goel NS (1973) Diffusion models . the firing of a ncuron with varying threshold. J.
Theor. Biol. 39:633-644,

Cowan JD (1970) A staustical mechanics of nervous activity. In Gerstenhaber M (ed.) Some
mathematical questions in biology. Amer. Math. Soc., Providence, R1L

Cowan JD (1974) Stochastic models of neuro-electric activity. In Rice SA, Freed KF, Light JC
(eds.)) Statistical mechanics. Univ. of Chicago Press, Chicago.

Cox DE. Miller HD (1972 Theory of stochastic processes Chapman and Hall, London,

Eccles JC v 1ued) The phvaologs of synapses. Academic Press, NY.




(eds.) Proceedings of the NATO Advanced Rescarch Workshop on Stochastic Resonance and it
Applicatons ta-Physics and Biology: toappear.

Maren AJ, Harston CT. Pap RM (1990) Handbook of neural computing apphicatons Avadenny
Press, San Dicgo, Califomnia.

McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys. Rev. AR9:4x854-4869
Nicolis G, Nicolis C, McKeman D (1992) Stochastic resonance in chaotic dynamics. Shlesinger
MF. Moss FE, Bulsara AR (eds.) Proceedings of the NATO Advanced Rescarch Workshop on

Stochastic Resonance and its Applications to Physics and Biology: to appear.

Moss FE (1992) Siochastic resonance; from the ice ages to the monkey’™s car. In Weiss G (ed. s
Some problems in statistical physics. SIAM, Philadelphia.

Pribram K (1991) Brain and perception: hotonomy and structure in figural processing. Lawrence
Erlbaum Assoc., Hillsdale, NJ.

Rall W (1970) Dendritic neuron theory and dendro-dendritic synapses in a simple cortical system.
In Schmidt FO (ed.) The neurosciences: second study program. Rockefeller Univ. Press, New
York.

Rall W, Rinzel J (1973) Branch input resistance and steady state attenuation for input 10 one
branch of a dendritic ncuron model. Biophys. J. 13:648-688.

Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injcted at one
branch. Biophys. J. 14:759-790.

Rinzel J, Ementrout B (1989) Analysis of neuronal excitability and oscillations. In Koch C,
Segev I (eds.) Methods in neuronal modeling. MIT Press, Cambridge, Mass.

Risken H (1984) The Fokker Planck equation. Springer, Berlin.

Rose J, Brugge J, Anderson D, Hind J (1967) Phase-locked response to low frequency tones in
single auditory nerve fibres of squirrel monkey. J. Neurophys. 30:769-793.

Schieve WC, Bulsara AR, Davis G (1991) Singlc effective ncuron. Phys. Rev. A43:2613-2623.

Segev I Fleshman JW, Burke RE (1989) Compartmental models of complex neurons. In Koch C,
Segev I (eds.) Methods in neuronal modeling. MIT Press, Cambridge, Mass.

Segev I, Rapp M, Manor Y, Yarom Y (1992). Analog and digital processing in single nerve cells:
dendritic integration and axonal propagation. In McKenna T, Davis J, Zometzer S (eds.) Single
neuron computation. Academic Press, N.Y.

Siegal R (1990) Nonlincar dynamical system theory and primary visual cortical processing. Phy-
sica 42D:385-395.

Stein RB (1967) Some models of neuronal vaniability. Biophys. J. 7:37-68.
Stein RB (1965) A theoretical analysis of ncuronal vanability. Biophyshys J. 5:173-184.

Stein RB. Leung KV, Oguztorch MN, Williams BW (1974) Propenties of small neural nctworks
Kybernetih 14:223.230




